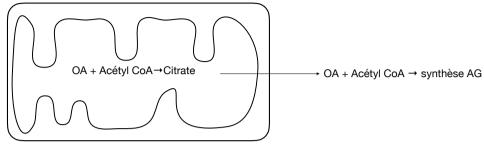

Mnémo: Si ISO Cé sucer elle suce du fumier mal oxydé (ordre des constituants)



Réactions cycle de Krebs					
Synthèse du citrate	Citrate synthase	Acétyl-CoA se condense avec OA. Étape d'engagement. Exergonique	<u>Irréversible</u>		
Isomérisation du citrate en isocitrate	Aconitase (centre fer souffre) (= isomérase)	Passage de l'alcool tertiaire en secondaire (devient oxydable). Étape intermédiaire: déshydratation puis réhydratation. Réaction inhibée par fluoroacétate (poison dans plantes : défense contre herbivores).	Réversible		
Décarboxylation oxydative de l'isocitrate	Isocitrate déshydrogénase	Nécessite NAD+ produit du NADH. Aboutit à un diacide: α cétoglutarate.	<u>Irréversible</u>		
Décarboxylation oxydative de l'αcétoglutarate	Complexe αcétoglutarate DH	Formation de: NADH,H+, CO₂. D'abord décarboxylation puis oxydation et ajout du succinate→succinyl-CoA.	<u>Irréversible</u>		
Formation du succinate	Succinyl-CoA synthétase	Formation de: CoASH, GTP. NDP kinase permet transfert GTP vers ATP.	Réversible		
Oxydation en fumarate	Succinate DH	Formation de: FADH ₂ . Formation d'une double liaison. Inhibée par malonate homologue inférieur du succinate.	Réversible		
Formation de malate	Fumarase	Après oxydation en fumarate, formation du malate par hydratation.	Réversible		
Oxydation en oxaloacétate	Malate DH	Formation de: NADH,H+. Fonction OH oxydée en fonction cétone. Puis OA va à nouveau se condenser avec Acétyl-CoA.	Réversible		

Bilan: Acétyl-CoA + 3NAD+ + FAD + GDP + Pi + $2H_2O \rightarrow 2CO_2 + 3NADH + FADH_2 + GTP + HSCoA + 2H^+$

A/p de l'acétyl CoA					
3 oxydations par enzyme à NAD+	isocitrate DH, α cétoglutarate DH, malate DH	7,5 ATP			
1 oxydation par enzyme à FAD	succinate DH	1,5 ATP			
Scission du succinyl CoA	formation d'un GTP ou ATP	1 ATP			
Total		10 ATP			
A/p du pyruvate (en plus)					
1 oxydation avec NAD+	pyruvate DH	2,5 ATP			
Total		12,5 ATP			

Condensation en citrate pour sortir de la mitochondrie, c'est le substrat pour la synthèse des AG

Lorsqu'on puise pour une synthèse dans le cycle de Krebs, il va y avoir une baisse de la qté d'OA, c'est le **facteur limitant** (plus de possibilité de condensation de l'acétyl-CoA) →**Voies annexes**

Le succinyl-CoA est un précurseur de la synthèse des porphyrines et de l'hème (hémoglobine)

Voies anaplérotiques						
Réaprovisionnement d OA	onnement en	Pyruvate carboxylase (biotine)	Pyruvate + CO ₂ + ATP→ OA + ADP + Pi + 2H+	Rôle dans NGG Irréversible		
		PEP carboxy kinase	$PEP + CO_2 + GDP {\longleftrightarrow} \mathbf{OA} + GTP$	Sens inverse NGG Réversible		
		ASAT (transamination a/p ASP)	ASP + αcetoglu ←→ OA + GLU	Réversible		
Réaprovisionnement e αcétoglutarate		ASAT (aspartate transaminase)	OA + GLU↔ αcétoglu + ASP	Réversible		
		Glutamate DH	GLU + NAD+ → αcétoglu + NADH + NH ₃ + H+	Irréversible		

Régulation du cycle de krebs					
Disponibilité en substrat: acétyl CoA	Produit a/p du pyruvate par la pyruvate DH si trop d'acétyl CoA <u>inhibition</u> pryruvate DH, et donc bloque sa propre synthèse.	PK			
	Si beaucoup d'acétyl CoA, il faut qu'il se condense à OA donc <u>active</u> la pyruvate carboxylase pour former de l'OA	PEP Pyruvate déshydrogénase			
	Acétyl-CoA <u>active</u> Citrate synthase et donc le cycle de Krebs	OA Citrate synthase Citrate			
Régulations enzymatiques	complexe PDH	Phosphorylé: inactive Phosphorylé par pyruvate DH kinase substrat: NADH, ATP, acétyl CoA témoignent de la charge énergétique, influe la PDH phosphatase			
	Enzymes du cycle	3 étapes irréversibles: citrate synthase, isocitrate DH, α cétoglu DH. Elles sont inhibées par les produits finaux: ATP, NADH, succinyl CoA.			

Cycle de Krebs = carrefour beta oxydation et glycolyse.
PDH catalyse une réaction irréversible c'ets pour ça qu'il est impossible de NGG a/p de acétyl-CoA

Les deux composés principaux sont le **glucose** et les **AG**, la fourniture d'acétyl CoA par la beta oxydation freine la glycolyse (épargne le glucose) c'est la raison pour laquelle l'acétyl-CoA inhibe la **pyruvate déshydrogénase**. L'abondance de cet acétyl CoA va conduire à une augmentation du citrate qui est un inhibiteur de l'enzyme-clé de la glycolyse, la **pyruvate phospho kinase de type 1**.

Carence en Vit B1 (tiamine) : perturbation métabolisme pyruvate, cette carence est observée chez l'alcoolique dénutri ou régime pauvre en B1 cela entraine des troubles neurologiques car tiamine est la base du TDP qui participe à la PDH et alpha céto GLU DH, atteinte nerveuse car les cellules nerveuse n'utilise quasiment que Glc comme source d'E.