Fiche UE1: Enzymologie

1. Les enzymes, généralités

Définition: les enzymes sont des protéines douées d'une activité catalytique.

- —> elles réalisent des réaction THERMODYNAMIQUEMENT POSSIBLES (=exergonique)
- -> elle le font de façon spécifique: spécificité de réaction + de substrat.
- -> plus rapidement.

Il existe deux types d'enzymes:

E A COENZYME.
Une partie protéique: apoprotéine
Une partie non protéique; groupement
prosthétique oucosubstrat.

On peut classer les enzymes selon leurs activités:

EC1	Les oxydoréductases	Transfert d'électrons entre oxydant+réducteur.
EC2	Les transférases	Transfert d'un atome R sur une molécule (ex: aminotransférase, transfert grp amine)
EC3	Les hydrolases	Rupture lien covalent entre C-X avec eau
EC4	Les lyases	Ajout d'un groupement, ou rupture C-C, sans présence d'eau
EC5	Les isomérases	Remaniement interne de la molécule sans changement de la formule brute
EC6	Les ligases	Formation d'une liaison entre 2 atomes avec élimination d'une molécule d'eau

Noms d'enzymes associés au diagnostique de certains pathologie tissulaire:

Amylase	Pancréas
Lipase	
ASAT	Foie
ALAT	
Créatine kinase (CK)	Muscles
CKMB	Coeur (infarctus)

Fonctionnement:

- l'enzyme se lie à son substrat par son SITE ACTIF
- le lien est très souvent NON COVALENT
- le modèle actuel qui explique le lien est celui de Kohsland: ajustement induit
- le site actif représente une très petite partie des enzymes

2. Les enzymes micheliennes

La cinétique:

- la courbe d'étude de vitesse en fonction de la concentration en substrat est une <u>hyperbole</u>
- On y observe deux valeurs:

La Vmax (vitesse maximale)

Le Km: constante de Michelis. C'est la concentration en substrat pour atteindre la moitié de la Vmax. Elle témoigne de l'affinité enzyme-substrat.

Formule à retenir:

$$v = v_{max} \times \frac{[S]}{[S] + k_M}$$

Influence sur activité enzymatique

- température
- pH
- ions

Il existe des optimums, qui se rapprochent des conditions physiologiques (pH neutre et température environ de 37°)

Les inhibiteurs

Inhibiteurs réversibles		Inhibiteurs irréversibles
Compétitifs	Non compétitifs	Modification des activités
Se fixe sur le site actif. De l'enzyme (prends la place du substrat)	Se fixe sur une autre partie que le site actif de l'enzyme	catalytique ou blocage avec lien covalent.
Km augmente	Km constant	
Vmax constante.	Vmax diminuée	

3. Les enzymes allostériques

- La courbe de la vitesse en fonction de la quantité de substrat est une **sigmoide**
- Ceci est expliqué par leur structure: elles sont multimérique. Une fois un. Substrat attaché à une sous unités, les autres sont « débloqués ». Les autres substrats peuvent donc se lier plus facilement à l'enzyme.
- le modèle qui explique leurs lien avec le substrat est le modèle de Koshland: celui de l'ajustement induit.

4. Les coenzymes

Propriétés générales:	 de nature non protéique poids moléculaire faible thermostable souvent de la classe des vitamines (B et C) 		
stucture et nom	Vitamine	Fonctions	
NAD ONH2 OHOHOH NH2 OHOHOH OHOH NH2 OHOHOH NH2 OHOHOH NH2 OHOHOH NH2 OHOHOH NH2 OHOHOH NH2 OHOH NH2	B3	- Transporteur de H - retrouvé ++ dans le métabolisme	
Vitamine C/ acide ascorbique HO HO OH	C	- hydroxylation	

Coenzyme Q/ Ubiquinone	NE DERIVE PAS D'UNE VITAMINE	- transporteur d'électrons dans la chaine respiratoire (menbrane mitochondriale)
Coenzyme A	B5	 transporteur. universel des groupes acyls important pour le métabolisme !!
Phosphate de pyridoxal	B6	transaminationdécarboxylation des acide aminé
Biotine HN NH HS COOH	B8	décarboxylationnéoglucogenèse